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Generalized kinetic potential in binary nucleation
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By introducing a coordinate transformation, we investigate the feature of a generalized kinetic potential for
binary nucleation that governs the pathway of the major nucleation flux. The general conditions under which
the major nucleation flux bypasses the thermodynamic saddle point are clarified, and both the discrepancy in
the attachment rates of the two species and the nonuniformity of the direction of the nucleation flux are found
to be the major causes of the bypassing. The ridge crossing phenomenon is explained on the basis of the
present theory. Binary nucleation reduces consistently to single component nucleation when the attachment
rate for one of the species tends to vanish. The present theory agrees with the results of numerical simulations.
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I. INTRODUCTION

The problem of nucleation flux trajectories has recen
attracted much attention in the physics community. A g
eral approach to a feasible solution for multicompon
nucleation was outlined first by Langer@1#. His approach
was based on the concept of the lowest intervening sa
point of the system’s multidimensional free energy throu
which the major nucleation flux passes, thus driving the s
tem from a metastable state to a state of greater stab
This concept was shown to be very fruitful. Since then ma
attempts have been made in order to demonstrate the ki
pathway in a wide class of physical and chemical syste
~see, e.g., Ref.@2# and references therein!. The relevance of
the binary nucleation flux topology with regard to acid ra
phenomena was extensively discussed in a recent review@3#.
Recently this approach was discussed in connection with
kinetic pathway problem in the segregation process@4,5#,
with the location of the real saddle point for nucleation d
ing Martensitic transformation@6#. However, despite obviou
progress in this direction, our comprehension of a techni
for locating the pathways of the major nucleation flux in
specific multicomponent system is still lacking. In th
present paper we make an attempt to answer this questio
the case of binary nucleation.

Multicomponent nucleation is a very wide area of scien
and technology, with applications ranging from atmosphe
science to materials science~for a review see Ref.@3#, and
references therein!. The kinetics of binary nucleation wa
first considered by Reiss@7#, who assumed that nucleatio
goes through the saddle point of the surface of the revers

*Deceased on 20 May 1998.
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work Wrev of forming a cluster@we call it a thermodynamic
saddle point~TSP!#, keeping a constant direction of the flu
in the TSP region and following the path of the steep
descent ofWrev. Other theories@2,8–10#, proposed later, are
also based on the assumption that the major nucleation
goes through the TSP with a constant direction, althou
Stauffer realized that the direction of growth will be affect
by the asymmetry of the kinetic coefficients@10#. However,
numerical results obtained by solving the kinetic govern
equations showed that in some cases the major nuclea
flux bypasses the TSP@11–13#. This phenomenon, referre
to as ridge crossing, seems to be a possible phenome
when the two condensation rates differ significantly. T
nucleation across a ridge was studied by Trinkaus@14#, Shi
and Seinfeld@15#, Wu @16#, and Berezhkovskii and Zitser
man @17#, and they ascribed the ridge crossing phenome
to coupling between the shape of the free energy surface
a large disparity in the impingement rates. However, in th
treatments@14–17# the expansion ofWrev at the TSP is em-
ployed, so that their theories may be valid for only the vic
ity of the TSP. Experimental observations also showed la
discrepancy from the classical nucleation theory at low c
centration of one of the species@18#.

Basically, theories@2,7–10#, despite their many successe
have been concerned with only the vicinity of the TS
Moreover, these theories are not able to judge by themse
whether the major nucleation flux passes through the T
region or not, sinceWrev is determined by thermodynami
parameters only. Consequently, the kinetic potentialWK was
introduced instead ofWrev as the relevant potential to dete
mine the kinetic pathway of the nucleation flux. The kine
potential includes both the thermodynamic and kinetic
rameters, and the expression for theWK reads@10,14,19#
7580 © 1998 The American Physical Society
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WK5Wrev1W1 , ~1!

W152kT ln KA
1 , ~2!

where KA
1 denotes the attachment rate ofA species,T the

temperature, andk the Boltzmann constant. However, it wa
shown recently@19# that the kinetic potentialWK by itself
cannot determine unambiguously the pathway of the m
nucleation flux. In the present paper, we provide a gene
ized kinetic potential that contains sufficient information
determine the pathway of the major nucleation flux.

The outline of the paper is as follows. First, we introdu
a coordinate transformation where the nonuniformity of
direction of the nucleation flux is taken into account. B
virtue of this transformation, the generalized kinetic pote
tial, which governs the pathway of the major nucleation flu
can be separated into several terms that are subject to d
physical interpretations. Then we discuss the contribution
these terms to the generalized kinetic potential, and sh
their roles in determining the pathway of the major nuc
ation flux. Thus the general conditions for ridge crossing
clarified. Finally, a numerical example of the ridge cross
is explained in light of the present theory.

II. GENERALIZED KINETIC POTENTIAL

Consider the process of homogeneous nucleation of liq
clusters in a binary vapor, which we denote as thea phase,
of speciesA andB at temperatureT, pressurepa and com-
position xB

a of the speciesB. Suppose that the vapor is i
metastable equilibrium and the driving force exists towa
the stable liquid phaseb. The basic equation governing th
time dependent cluster concentrationf (nA ,nB ,t) may be
written as@7#

] f ~nA ,nB ,t !

]t
52

]JA~nA ,nB ,t !

]nA
2

]JB~nA ,nB ,t !

]nB
, ~3!

whereni ( i 5A,B) denotes the number ofi molecules in a
cluster. The componentsJA andJB of the nucleation fluxJ
are given by@7#

JA~nA ,nB ,t !52c0~nA ,nB!KA
1~nA ,nB!

]

]nA

3S f ~nA ,nB ,t !

c0~nA ,nB! D , ~4!

JB~nA ,nB ,t !52c0~nA ,nB!KB
1~nA ,nB!

]

]nB

3S f ~nA ,nB ,t !

c0~nA ,nB! D , ~5!

where KB
1 denotes the attachment rate ofB species, and

c0(nA ,nB) the metastable equilibrium concentration of clu
ters specified by (nA ,nB) in the system.c0(nA ,nB) is given
by

c0~nA ,nB!5FLP~cA1cB!exp@2Wrev~nA ,nB!/kT#, ~6!
r
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whereFLP denotes the Lothe-Pound factor@20# and ci the
number density ofi species monomers in the vapor. We d
not discuss here the value ofFLP , because it is not directly
related to the main purpose of the present paper. We neg
the cluster size dependence ofFLP in the following. No ex-
plicit form of Wrev is needed in the following treatmen
Ki

1(nA ,nB) may be given, under the approximation that t
effective area for condensation is 4pR2, whereR denotes
the radius of a cluster characterized by (nA ,nB), by

KA
1~nA ,nB!54pR2~nA ,nB!pA

a/~2pmAkT!1/2, ~7!

KB
1~nA ,nB!54pR2~nA ,nB!pB

a/~2pmBkT!1/2, ~8!

wheremi denotes the molecular mass ofi species. Note tha
the ratio betweenKA

1(nA ,nB) and KB
1(nA ,nB) is constant

for a given state of a parent vapor phase, i.e.,

r 5
KB

1~nA ,nB!

KA
1~nA ,nB!

5
pB

a

pA
a S mA

mB
D 1/2

5const. ~9!

Equation~3! represents the conservation of the number d
sities of clusters, and it holds when the cluster coalescenc
negligible. This will be the case in the nucleation stage
fore the growth stage starts. Equations~4! and~5! show that
the ‘‘mobility coefficient’’ matrix is not a unit matrix multi-
plied by a scalar. This ‘‘anisotropy’’ plays an important ro
in determining the pathway of the major nucleation flux.

Now we introduce a force vector fieldV5(VA ,VB) de-
rived from the potentialC5 f /c0 @10# as

V52“C. ~10!

From Eqs.~4! and ~5!, V is related toJ by

VA~nA ,nB ,t !5
JA~nA ,nB ,t !

c0~nA ,nB!KA
1~nA ,nB!

, ~11!

VB~nA ,nB ,t !5
JB~nA ,nB ,t !

c0~nA ,nB!KB
1~nA ,nB!

. ~12!

We represent the direction ofV in the size space by an ang
u with respect to thenA axis, i.e.,

tan u~nA ,nB ,t !5VB~nA ,nB ,t !/VA~nA ,nB ,t !. ~13!

By employing Eqs.~11! and~12!, the relation betweenu and
the directionf of nucleation flux is obtained by

tan u~nA ,nB ,t !5tan f~nA ,nB ,t !/r , ~14!

where

tan f~nA ,nB ,t !5JB~nA ,nB ,t !/JA~nA ,nB ,t !. ~15!

Figure 1 shows the relation betweenu and f for various
values ofr. When r 51, u[f; when r ,1, u.f, with the
exception thatu5f atf50° and 90°; whenr→0, the curve
approaches the ordinate axis.

We introduce time-dependent orthogonal curvilinear c
ordinatesj andh, in whichj is chosen to be the lines of flow
of the vector fieldV andh the contours ofC. dj anddh are
related todnA anddnB by @21#
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dnA5h1dj cosu2h2dh sin u, ~16!

dnB5h1dj sin u1h2dh cosu, ~17!

whereh1 andh2 denote the scale factors. By employing Eq
~16! and ~17!, the force components]C/]nA and ]C/]nB
may be expressed as

]C/]nA5~cosu/h1!]C/]j2~sin u/h2!]C/]h, ~18!

]C/]nB5~sin u/h1!]C/]j1~cosu/h2!]C/]h. ~19!

From Eqs.~13!, ~18!, and~19!, we obtain

]C/]h50, ~20!

i.e., C is independent ofh, henceC5C(j,t). This auto-
matically leads to a simple relation between the magnitud
V(V5uVu) andV052]C(j,t)/]j:

V5~1/h1!V0~j,t !. ~21!

Substituting Eq.~21! into Eqs.~11! and ~12!, we obtain the
following expressions forJA andJB :

JA~nA ,nB ,t !5~1/h1!V0c0KA
1cosu, ~22!

JB~nA ,nB ,t !5~1/h1!V0c0KB
1sin u. ~23!

The magnitude of the nucleation flux can be expressed a

J~nA ,nB ,t !5FLP~cA1cB!exp~2WGK/kT!. ~24!

We callWGK as the generalized kinetic potential that is giv
by

WGK5Wrev1W01W11W21W3 , ~25!

W052kT ln V0 , ~26!

W25kT ln h1 , ~27!

FIG. 1. The relation betweenu andf for various values ofr.
.

of

W352
kT

2
ln~cos2u1r 2sin2u!52kT ln~cosu/cosf!.

~28!

To obtain the last expression forW3 Eq. ~14! is employed.
As seen from Eq.~25! WGK consists of the force termW0 ,
the kinetic termW1 , the scaling termW2 , and the anisotropy
termW3 as well as the thermodynamic reversible workWrev.

Up to now, we do not make any approximation, so th
Eqs.~22!–~24! are exact results that are valid for the who
size space and for transient nucleation. Since Eqs.~16! and
~17! are a curvilinear transformation, the nonuniformity
the direction of nucleation flux is taken into account. In t
theories of Reiss@7# and Stauffer@10#, the uniformity of the
direction of nucleation in the TSP region is assumed, an
linear coordinate transformation is employed in which o
axis is chosen along the direction of the flux. This assum
tion precludes the variations ofW2 and W3 , of theseW3
turns out to be the major cause of ridge crossing~an example
will be given later!.

III. MAJOR NUCLEATION FLUX AND THE STRUCTURE
OF WGK

It follows from Eq. ~24! that J is governed byWGK. The
pathway of the major nucleation flux is given by the vall
of WGK, since this corresponds to the ridge of the profile
J. Obviously, it does not pass through the TSP in general
to W0 , W1 , W2 , andW3 .

When the major nucleation flux bypasses the TSP, it
been called the ridge crossing ofWrev @13,14#. The physical
origin of the ridge crossing phenomenon can be ascerta
by analyzing the topology of the surfaceWGK(nA ,nB). Since
the major nucleation flux goes along the valley ofWGK, it
inevitably goes across the ridge of the surface
Wrev(nA ,nB). In the conventional picture this is interprete
as ridge crossing. Now let us discuss the contributions
W0 , W1 , W2 , and W3 to the pathway of the major nucle
ation flux.

A. Force term W0 and kinetic term W1

The force termW0 is a function that is independent ofh,
i.e., along anh line it is constant. If the scale for the coo
dinatej is properly chosen,V0 can be a constant. For ex
ample, if we assign

j512C, ~29!

it follows that

V051. ~30!

In the following treatment we employ this choice forj, so
that W0 is zero.

WhenW1 is added toWrev, it is called the kinetic poten-
tial WK @19,22,23#. The main feature of the surface ofWK

can be described by the kinetic critical nucleus@19,22,23#,
for which the probabilities of its decay and growth balanc
i.e.,

KA
15KA

2 , ~31!
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KB
15KB

2 . ~32!

The saddle point and extremum on the surface ofWK corre-
spond to the kinetic critical nucleusnK. In Ref. @19#, the
kinetic critical nucleus was extensively discussed for bin
systems, and it was shown there that~1! the sizenK of the
kinetic critical nucleus is in general smaller than the sizen*
of the thermodynamic critical nucleus;~2! there exist two
valuesnK(1) and nK(2) for nK; and ~3! beyond the critical
state,nK does not exist, and it is called the runaway instab
ity. In this case, there is no saddle point or extremum on
surface ofWK. In the present paper, we do not consider
case of the runaway instability. Note that the kinetic termW1
varies strongly with size for small clusters, but varies wea
for larger ones. When the driving force for nucleation is n
very large,nK(1) will be large, andW1 may be approximately
treated as a slightly tilted plane added to the surface ofWrev

for not small size, so thatnK(1) will be a saddle point onWK

which we call the kinetic saddle point~KSP!. The numerical
results@19# show that the difference in size between the T
and KSP is negligibly small for the systems treated by W
louzil and Wilemski@13#, so thatW1 is not the major cause
of the ridge crossing that is found by Wyslouzil and Wilem
ski.

B. Scaling term effect on the pathway of the
major nucleation flux

Since the scale factor can be obtained only when the g
erning equation is solved, in the present caseW2 is an un-
known term. However, in determining the pathway of t
major nucleation flux, only the variation ofW2 is needed, so
that we may make an approximation for the variation ofW2 .
Let us consider contour lines ofWGK in the size space, the
the valley corresponds to the trajectory of the extrema of
curvature along the contour lines ofWGK. However, the
equation to determine it is too complicated to be useful i
numerical study. The possible way to approximately de
mine the valley is to select a coordinate system, thus
trajectory of the extrema along grids of one coordinate
proximately gives the valley ofWGK. It becomes the exac
result whenWGK along the valley is constant, and it is a goo
approximation when the valley is sharp. In the present pa
we chose the curve of

]WGK/]h50 ~33!

as an approximation to the valley ofWGK, since the numeri-
cal results@12,13# showed that the magnitude of nucleatio
flux dominates within a narrow region along the pathway
the major nucleation flux and changes very slowly along
hence the curve determined by Eq.~33! is close to the valley
of WGK in these cases. In the following discussion we lim
our consideration to the cases where the curve determine
Eq. ~33! approximately gives the valley ofWGK.

As we see from Eq.~19!, the scale factorh1 represents the
relative magnitude of forceV along anh line, and the mini-
mum of h1 corresponds to the largest value ofV on this
curve. The variation ofh1 with h can be expressed by@21#

]a2 /]j5~a1 /h2!]h1 /]h, ~34!
y

-
e
e

y
t

-

v-

e

a
r-
e
-

r,

f
;

t
by

wherea1 anda2 denote the unit vectors alongj andh coor-
dinates, respectively. The transformation from (nA ,nB) to
(a1 ,a2) can be expressed by

nA5a1cosu2a2sin u, ~35!

nB5a1sin u1a2cosu, ~36!

wherenA and nB denote the unit vectors alongnA and nB
coordinates. From Eqs.~34!, ~35!, and~36!, we can obtain

]h1 /]h52h2]u/]j. ~37!

Then, the variation ofW2 with h can be rewritten as

]W2 /]h52kT~h2 /h1!]u/]j. ~38!

Sinceu represents the direction of the tangent toj lines (h
5const), when j lines are relatively straight, i.e.
(1/h1)]u/]j'0, (1/h2)]W2 /]h will be small. It is interest-
ing that Wyslouzil and Wilemski@24# found that theh lines
form a set of approximately straight and parallel lines for t
ethanol-hexanol system, and this qualitative behavior d
not seem to depend on the specific values of the impin
ment rates. These numerical results imply thath1 is approxi-
mately constant along eachh line, hence]W2 /]h can be
neglected for these cases. It should be noted that almost
stantu along anh line does not necessarily mean thatf is
also almost constant, which can be seen in Fig. 1.

C. Anisotropy term and the ridge crossing phenomenon

It follows from Eqs.~12! and ~27! that

W352
kT

2
ln

r 2~11tan2f!

r 21tan2f
. ~39!

Figure 2 shows variation of the anisotropy termW3 with f
for various values ofr. In general,W3 increases withf from
the minimum value of zero forf50 to the maximum value
2kT ln r for f→p/2. Whenr is small,W3 increases rapidly
with f for small f and gradually for largef. When r ap-
proaches zero, the curve ofW3 approaches the ordinate ax
for smallf. From the first expression forW3 in Eq. ~28! we
can obtain the variation ofW3 with u for various values ofr
as shown in Fig. 3. The variations ofW3 depend onr

FIG. 2. The values ofW3 with f for various values ofr.



e

ic
s

-

e

S
n
u
is

e

th

-
n

y be
g
:

f

ht

P.
oss

t
he
n for
y

so-
r
ar-

-

e
n-

, the

c
led
,
y

t is

rs

tion
ling
y-
way

f
-
m

-
l

7584 PRE 58JIN-SONG LI, KAZUMI NISHIOKA, AND IGOR L. MAKSIMOV
strongly whenu is close to 90°, but weakly onr for smaller
values ofu. Whenu is small, cos2u dominates andW3 be-
comes independent ofr. However, whenu is close to 90°,
r 2sin2u dominates, and henceW3 depends strongly onr.

Consider the cases in whichf decreases~i.e.,u decreases!
monotonically alongh lines, whereh is chosen to increas
from the nB axis toward thenA axis. Then,W3 decreases
monotonously along anh line. Figure 4 shows a schemat
variation ofWGK along anh line by neglecting the variation
of W1 andW2 . The minimum ofWrev is denoted byC. When
W3 is added toWrev, the minimum is shifted toD. Note that
the value ofh corresponding toD is larger than that corre
sponding toC. That is, the curve determined by]WGK/]h
50 is shifted away from thenB axis and is bent toward th
nA axis compared with the curve determined by]Wrev/]h
50; hence it does not pass through either the KSP or T

It should be emphasized again that the above discussio
based on the variation of the direction of the nucleation fl
along anh line. Once the direction of the nucleation flux
assumed to be constant in the TSP region@2,7–10#, the
variations ofW2 and W3 are entirely excluded, so that th
major cause of ridge crossing is omitted.

Thus, the anisotropy termW3 plays the central role in
judging whether the major nucleation flux passes through

FIG. 3. The values ofW3 with u for various values ofr.

FIG. 4. Schematic changes ofWrev, W3 , andWGK with h. The
direction ofh is chosen so thatu andf tend to decrease withh.
P.
is

x

e

TSP or not. When the variation ofW3 can be neglected com
pared with that ofWrev, the conventional Reiss assumptio
that the major nucleation flux passes through the TSP ma
a good approximation. It may be valid under the followin
cases: ~1! smooth variation of the anisotropy term
](W3 /W3 max)/]f,1, which is relevant forr .0.1 ~see Fig. 2
of the present paper and Fig. 2~a! in Ref. @13#!; ~2! the varia-
tion of Wrev with h is sharp in comparison to the variation o
W3 , i.e.,Wrev takes a sharp extremum at the TSP~see Fig. 5
in Ref. @12#!; and ~3! f is approximately constant alongh
(]f/]h'0), e.g., flux trajectories are parallel and straig
~see Fig. 3 in Ref.@13#!.

The ridge crossing ofWrev will be observed only whenr
is small enough. For small enoughr the pathway of the ma-
jor nucleation flux may be shifted far away from the TS
When this happens, the flux trajectories inevitably go acr
the ridge lines of the surface ofWK(nA ,nB) as well as of
Wrev(nA ,nB). If the region around the TSP is relatively fla
and the direction of the nucleation flux varies strongly in t
TSP region, the ridge crossing may also be observed eve
not very small r (r'0.01). The ridge crossing found b
Greeret al. @11# and Wyslouzil and Wilemski@13# are likely
to correspond to this case.

The ridge crossing found by McGraw@12# in the water–
sulfuric-acid system may be an example of the highly ani
tropic case. SinceWrev is very sharp on the TSP, the majo
nucleation flux passes through the TSP and follows the n
row valley of Wrev even for highly supersaturated~200%
relative humidity! water vapor condition, i.e., for small val
ues ofr @12#. However, whenr is further decreased~in the
order of 10214!, ridge crossing is observed.

D. Transition to unary nucleation

The anisotropy termW3 also plays the central role in th
transition from binary to unary nucleation. When the conce
trationcB of B species in a binary parent phase decreases
TSP moves toward thenA axis, and whencB /cA→0, the
TSP approaches thenA axis. WhencB /cA50, i.e.,cB50, the
TSP is located on thenA axis. This is the thermodynami
process of transition to unary nucleation and it is control
by the thermodynamic parametercB /cA . On the other hand
when r decreases, JB /JA decreases and ultimatel
JA(nA ,nB.0,t) as well asJB(nA ,nB.0,t) become negli-
gible compared withJA(nA,0,t) on thenA axis. This is the
kinetic process of the transition to unary nucleation, and i
controlled by the kinetic parameterr. AlthoughcB /cA→0 as
well when r→0, the physical roles of these two paramete
in the transition are different. The theories@2,7–10# of binary
nucleation based on the assumption that the major nuclea
flux passes through the TSP are not consistent in dea
with the transition to unary nucleation, since the thermod
namic parameter alone is assumed to determine the path
of the major nucleation flux.

Consider highly anisotropic cases, i.e., small values or.
The anisotropy termW3 reflects the role of the kinetic pa
rameterr, and it prevents the major nucleation flux fro
going toward thenB axis. As we see in Fig. 2, whenr be-
comes small,W3 increases steeply withf for small f. Ac-
cordingly, pointD in Fig. 4 shifts toward the point corre
sponding to a small value off, since even very smal
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deviation from this angle results in a rapid increase inWGK.
Whenr is small enough,W3 dominates in locating the mini
mum of WGK along h lines and it occurs atf'0. In this
case, the valley ofWGK coincides with thenA axis, i.e., the
transition from binary nucleation to unary nucleation occu

IV. A NUMERICAL EXAMPLE OF RIDGE CROSSING

Let us consider as an example the ridge crossing repo
by Wyslouzil and Wilemski@13#. Figure 5~b! in their paper
@13# shows that the major nucleation flux bypasses the T
for one specific vapor-liquid system~PD2! when r is about
1
54 . We repeat their calculation with the same conditions
order to obtain the contours ofC and the exact values off.
Our numerical results are similar to that reported by W
louzil and Wilemski, i.e., the major nucleation flux bypass
the TSP, as shown in Fig. 5~b! of their paper@13#. Figure 5
shows the contours ofC obtained from our numerical re
sults. As illustrated in Fig. 5, the contours form a set
nearly parallel butcurvedlines, which are different from tha
for the ideal ethanol-hexanol system where the conto
show a set of nearly parallel andstraight lines and the major
nucleation flux passes through the TSP@24#. For the ideal
ethanol-hexanol case, the features of the contours imply
the variations of bothW2 and W3 along anh line can be
neglected, so that the major nucleation flux passes thro
the TSP. However, for the PD2 case, the variation ofW3
cannot be neglected, since the curvature of the conto
means the variation ofu. By employing@21#

h15S ]nA

]j D sin u, ~40!

Eqs. ~28! and ~26!, W2 can be calculated. With the help o

FIG. 5. Contours ofC and the pathway of the major nucleatio
flux. The light solid lines are in the step of 0.1. The heavy cont
lines below the light solid lines correspond to the increase in
value of 12C by a ratio of 10, and the heavy solid lines above t
light solid lines to the decrease in the value ofC by a ratio of 10
from 1021 to 1025.
.
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Eq. ~33!, we determine the pathway of the major nucleati
flux that is superimposed in Fig. 5 as well as the valley
Wrev. In the region withC.0.9, the variation ofWrev domi-
nates so that the pathway of the major nucleation flux pr
tically coincides with the valley ofWrev; in the region with
0.1,C<0.9, the variation ofW3 is comparable with that of
Wrev, so that the pathway of the major nucleation flux is be
towards thenA axis; in the region withC,0.1, the pathway
of the major nucleation flux approaches again the valley
Wrev. Along h lines, we do find that the variations ofW1 and
W2 are negligibly small compared with that ofWrev andW3 .
A typical case correspondingC50.6 is shown in Fig. 6.

VI. SUMMARY

Binary nucleation from vapor to liquid phase was studie
and the following results obtained.

~1! Introducing a curvilinear coordinate system, we inve
tigated the feature of a generalized kinetic potential that g
erns the pathway of the major nucleation flux.

~2! The major nucleation flux does not in general pa
through either the thermodynamic or the kinetic saddle po
but it may not easy to be observed for most vapor-liqu
systems~see Ref.@13#!. General conditions under which ma
jor nucleation flux bypasses the thermodynamic saddle p
were clarified, and both the discrepancy in the attachm
rates of two species and the nonuniformity of the direction
nucleation flux were found to be the major causes of
ridge crossing.

~3! Binary nucleation reduces kinetically to a single com
ponent nucleation when the attachment rate for one of
species tends to vanish.

~4! The ridge crossing reported by Wyslouzil and Wilem
ski @13# was well explained on the basis of the prese
theory.
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